Visualizing Risk Prediction Models

نویسندگان

  • Vanya Van Belle
  • Ben Van Calster
  • Chun-Hsi Huang
چکیده

OBJECTIVE Risk prediction models can assist clinicians in making decisions. To boost the uptake of these models in clinical practice, it is important that end-users understand how the model works and can efficiently communicate its results. We introduce novel methods for interpretable model visualization. METHODS The proposed visualization techniques are applied to two prediction models from the Framingham Heart Study for the prediction of intermittent claudication and stroke after atrial fibrillation. We represent models using color bars, and visualize the risk estimation process for a specific patient using patient-specific contribution charts. RESULTS The color-based model representations provide users with an attractive tool to instantly gauge the relative importance of the predictors. The patient-specific representations allow users to understand the relative contribution of each predictor to the patient's estimated risk, potentially providing insightful information on which to base further patient management. Extensions towards non-linear models and interactions are illustrated on an artificial dataset. CONCLUSION The proposed methods summarize risk prediction models and risk predictions for specific patients in an alternative way. These representations may facilitate communication between clinicians and patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing an Intelligent Monitoring System for Early Prediction of Need for Intubation among COVID-19 Hospitalized Patients

Introduction: Predicting acute respiratory insufficiency due to coronavirus disease 2019 (COVID-19) can diminish the severe complications and mortality associated with the disease. This study aimed to develop an intelligent system based on machine learning (ML) models for frontline clinicians to effectively triage high-risk patients and prioritize who needs mechanical intubation (MI). Material...

متن کامل

The Prediction Model for Bankruptcy Risk by Bayesian Method

The importance of predicting bankruptcy risk of firms is increasing because of later financial crisis. Despite practical researchers trying to present models for predicting this risk, it seems that an optimum and acceptable model that is reliable for financial statement users and auditors in order to increase their ability in decision making and professional judgment has not been presented yet....

متن کامل

Visualizing Deep Neural Network Decisions: Prediction Difference Analysis

This article presents the prediction difference analysis method for visualizing the response of a deep neural network to a specific input. When classifying images, the method highlights areas in a given input image that provide evidence for or against a certain class. It overcomes several shortcoming of previous methods and provides great additional insight into the decision making process of c...

متن کامل

Visualizing Uncertainty in the Prediction of Academic Risk

This work proposes a generic visual representation to help relevant decision-makers to effectively address the inherent uncertainty present in the prediction of academic risk based on historical data. The three main sources of uncertainty in this type of prediction are visualized: the model predictive power, the data consistency and the case completeness of the historic dataset. To demonstrate ...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015